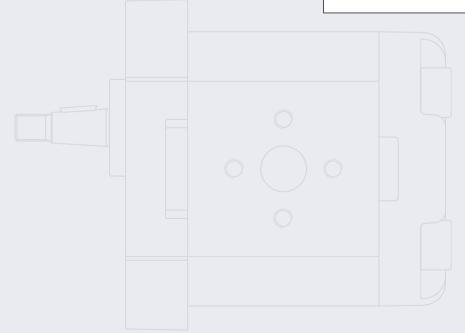
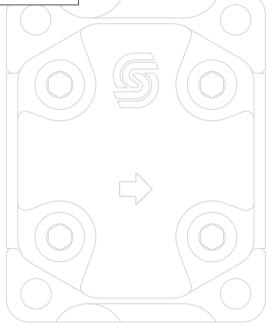


Group 3 Gear Pumps


Technical Information



Group 3 Gear Pumps Technical Information

General Information

OVERVIEW

The Sauer-Danfoss Group 3 is a range of peak performance fixed-displacement gear pumps. Constructed of a high-strength extruded aluminum body with aluminum cover and flange, all pumps are pressure-balanced for exceptional efficiency.

Some representatives of Group 3 gear pumps:

FEATURES

Group 3 gear pumps` attributes:

- Wide range of displacements from 22 to 90 cm³/rev [from 1.34 to 5.49 in³/rev]
- Continuous pressure rating up to 250 bar [3625 psi]
- Speeds up to 3000 min⁻¹ (rpm)
- SAE, DIN and European standard mounting flanges
- High quality case hardened steel gears
- Multiple pump configurations in combination with SNP1, SNP2 and SNP3

© 2005, Sauer-Danfoss. All rights reserved. Printed in Europe.

Sauer-Danfoss accepts no responsibility for possible errors in catalogs, brochures and other printed material. Sauer -Danfoss reserves the right to alter its products without prior notice. This also applies to products already ordered provided that such alterations can be made without affecting agreed specifications. All trademarks in this material are properties of their respective owners. Sauer-Danfoss and the Sauer-Danfoss logotype are trademarks of the Sauer-Danfoss Group.

SAUER Group 3 Gear Pumps Technical Information Contents

	IFRAI	INITA		TION
CIEN	IFKAI	HAPL	JKIVIA	עונטווו

GENERAL INFORMATION	Overview	2
	Features	
	Pump design	4
	SEP3	
	SNP3	
	Technical data	
	Determination of nominal pump sizes	
	Metric system	
	Inch system	
MODEL CODE DESCRIPTION	Model code	8
SYSTEM REQUIREMENTS	Pressure	10
	Speed	10
	Hydraulic fluids	11
	Temperature and viscosity	11
	Filtration	12
	Filters	12
	Selecting a filter	12
	Reservoir	12
	Line sizing	13
	Pump drive	13
	Pump drive data form	14
	Pump life	
	Sound levels	15
PUMP PERFORMANCE	Pump performance graphs	16
PRODUCT OPTIONS	Shaft, flange, and port configurations	20
	Shaft options	
	Mounting flanges	
	Shaft availability and torque capability	
	Port configurations	
	Standard port configurations	
	Nonstandard port configurations	
	Porting	
DIMENSIONS	SNP3 – Cl01, SC01 and CO01	26
	SNP3 – Cl02, SC02 and CO02	
	SNP3 – Cl02, SC03 and CO03	
	SNP3 – SC06 and CO06	
	SNP3 – SC07 and Cl07	

Group 3 Gear Pumps Technical Information General Information

PUMP DESIGN

SEP3

The SEP3 gear pump is available in a limited displacement range from 22.0 to 44.1 cm³/ rev [from 1.34 to 2.69 in³/rev]. Suitable for applications where the pressure is lower than 210 bar [3045 psi], the SEP3 range is released into SAE and European configurations. The overall length is reduced by 12 mm [0.47 in] in respect of the SNP3.

SNP3

The SNP3 is available in the full displacement range from 22.0 to 88.2 cm³/rev [from 1.34 to 5.38 in³/rev], and with higher pressure ratings than the SEP3. This is due to the pressure balance on each side of the gears obtained with pressure-balance plates made in antifriction alloy that contribute to high volumetric efficiency and maximum sealing as well.

SNP3 CO01 (cut away)

F005 073

TECHNICAL DATA

Specifications for the SNP3 and SEP3 gear pumps

		Frame size									
	Unit	22	26	33	38	44	48	55	63	75	90
Displacement	cm³/rev [in³/rev]	22.1 [1.35]	26.2 [1.60]	33.1 [2.02]	37.9 [2.32]	44.1 [2.69]	48.3 [2.93]	55.1 [3.36]	63.4 [3.87]	74.4 [4.54]	88.2 [5.38]
SNP3											
Peak pressure	har [nci]	270 [3910]	270 [3910]	270 [3910]	270 [3910]	270 [3910]	250 [3625]	250 [3625]	230 [3350]	200 [2910]	170 [2465]
Rated pressure	bar [psi]	250 [3625]	250 [3625]	250 [3625]	250 [3625]	250 [3625]	230 [3350]	230 [3350]	210 [3045]	180 [2610]	150 [2175]
Minimum speed	min ⁻¹ (rpm)	800	800	800	800	800	800	800	600	600	600
Maximum speed	min (rpm)	3000	3000	3000	3000	3000	3000	2500	2500	2500	2500
Weight	kg [lb]	6.8 [15.0]	6.8 [15.0]	7.2 [15.8]	7.3 [16.1]	7.5 [16.5]	7.6 [16.8]	7.8 [17.3]	8.1 [17.9]	8.5 [18.7]	8.9 [19.6]
Moment of inertia of rotating components	x 10 ⁻⁶ kg•m ² [x 10 ⁻⁶ lb•ft ²]	198 [4698]	216 [5126]	246 [5838]	267,2 [6340]	294,2 [6891]	312,2 [7408]	342,3 [8123]	378,3 [8977]	426,4 [10118]	486,5 [11545]
Theoretical flow at maximum speed	l/min [US gal/min]	66.3 [17.5]	78.6 [20.8]	99.3 [26.2]	113.7 [30.0]	132.3 [35.0]	144.9 [38.0]	137.8 [36.2]	157.5 [41.5]	186 [49.1]	220.5 [58.3]
SEP3 (01 and 07 co	nfiguration)										•
Peak pressure	bar [psi]	230 [3350]	230 [3350]	230 [3350]	230 [3350]	200 [2910]					
Rated pressure	bai [þsi]	210 [3045]	210 [3045]	210 [3045]	210 [3045]	180 [2610]					
Minimum speed	min ⁻¹ (rpm)	1000	1000	1000	1000	800					
Maximum speed	min (ipini)	3000	3000	3000	2800	2600			_		
Weight	kg [lb]	5.7 [12.57]	5.8 [12.79]	6.1 [13.45]	6.2 [13.67]	6.4 [14.11]					
Moment of inertia of rotating components	x 10 ⁻⁶ kg•m ² [x 10 ⁻⁶ lb•ft ²]	198 [4698]	216 [5126]	246 [5873]	294.2 [6981]	312.2 [7408]					
Theoretical flow at maximum speed	l/min [US gal/min]	66.3 [17.5	78.6 [20.8]	99.3 [26.2]	113.7 [30.0]	132.3 [35.0]					

Caution

The rated and peak pressure mentioned are for pumps with flanged ports only. When threaded ports are required a de-rated performance has to be considered. To verify the compliance of an high pressure application with a threaded ports pump apply to a Sauer-Danfoss representative.

520L0569 · Rev. C • 03/2005

Group 3 Gear Pumps Technical Information General Information

DETERMINATION OF NOMINAL PUMP SIZES

Use these formulae to determine the nominal pump size for a specific application:

Metric system

Inch system

Output flow: $Q = \frac{Vg \cdot n \cdot \eta_v}{1000}$

l/min

 $Q = \frac{Vg \cdot n \cdot \eta_v}{231}$

[US gal/min]

Input torque: $M = \frac{Vg \cdot \Delta p}{20 \cdot \pi \cdot \eta}$

Nm

 $M = \frac{Vg \cdot \Delta p}{2 \cdot \pi \cdot \eta_m}$

[lbf•in]

Input power: $P = \frac{M \cdot n}{9550} = \frac{Q \cdot \Delta p}{600 \cdot \eta}$

kW

 $P = \frac{M \cdot n}{63.025} = \frac{Q \cdot \Delta p}{1714 \cdot \eta}$

[hp]

Where:

SI units [US units]

Vq Displacement per rev. cm³/rev[in³/rev] bar [psi]

 $\Delta p = p_{HD} - p_{ND}$

min⁻¹ (rpm)

n = Speed

 Volumetric efficiency η_{v}

 $\eta_m = Mechanical (torque) efficiency$

= $\eta_v \cdot \eta_m$ = Overall efficiency

p_{HD} = Outlet pressure p_{ND} = Inlet pressure

bar [psi]

bar [psi]

520L0569 · Rev. C · 03/2005

Group 3 Gear Pumps Technical Information Model Code

MODEL CODE

A Type

Code	Description
SNP3	Standard gear pump
SEP3	Medium pressure gear pump

B Displacement

Code	Description	SNP3	SEP3
22	22.1 cm ³ /rev[1.35 in ³ /rev]	•	•
26	26.2 cm ³ /rev[1.60 in ³ /rev]	•	•
33	33.1 cm ³ /rev [2.02 in ³ /rev]	•	•
38	37.9 cm ³ /rev [2.32 in ³ /rev]	•	•
44	44.1 cm ³ /rev [2.69 in ³ /rev]	•	•
48	48.3 cm ³ /rev [2.93 in ³ /rev]	•	-
55	55.1 cm ³ /rev [3.36 in ³ /rev]	•	-
63	63.4 cm ³ /rev [3.87 in ³ /rev]	•	-
75	74.4 cm ³ /rev [4.54 in ³ /rev]	•	-
90	88.2 cm ³ /rev [5.38 in ³ /rev]	•	-

C Direction of rotation

	Code	Description	SNP3	SEP3
ſ	D	Right (Clockwise)	•	•
	S	Left (Counterclockwise)	•	•

D Shaft/Mounting flange/Port configuration

Code	Description	SNP3	SEP3
CO01	1:8 Tapered shaft / European 01 4-bolt flange / European flanged ports	•	•
CO02	1:8 Tapered shaft / European 02 4-bolt flange / European flanged ports	•	-
CO03	1:8 Tapered shaft / European 03 4-bolt flange / European flanged ports	•	_
CO06	1:5 Tapered shaft / German 4-bolt flange / German standard ports	•	_
CI01	Parallel shaft 20 mm [0.787 in] / European 01 4-bolt flange / European flanged ports	•	•
CI02	Parallel shaft 20 mm [0.787 in] / European 02 4-bolt flange / European flanged ports	•	_
CI03	Parallel shaft 22 mm [0.866 in] / European 03 4-bolt flange / European flanged ports	•	-
CI07	Parallel shaft 22.225 mm [0.875 in] / SAE B flange / Vertical 4-bolt flanged ports	•	•
SC01	DIN splined shaft / European 01 4-bolt flange / European flanged ports	•	-
SC02	DIN splined shaft / European 02 4-bolt flange / European flanged ports	•	-
SC03	DIN splined shaft / European 03 4-bolt flange / European flanged ports	•	_
SC06	SAE splined shaft / German 4-bolt flange / German standard ports	•	_
SC07	SAE splined shaft / SAE B flange / Vertical 4-bolt flanged ports	•	•

Legend:

Standard

O = Optional

- = Not Available

MOD	EL COI	DE (co	ntinued

		-	•	•
/				

E Variant code (3-letter code describes variants to standard configuration)

F Version (value representing a change to the initial project)

	Code	Description	
	•	Initial project [*LEAVE BLANK]	
ſ	1÷9 or A ÷ Z	t should be reserved to Sauer-Danfoss	

G Port type (if other than standard)

Code	Description	
	Standard port for the flange type specified [*LEAVE BLANK]	
Α	SAE flanged port	
В	Flanged port with threaded holes in X pattern (German standard ports), centered on the body	
c	Flanged port with threaded holes in + pattern (European standard ports)	
D	Threaded metric port	
E	Threaded SAE O-ring boss port	
F	Threaded Gas port (BSP)	
G	Flanged port with threaded holes in X pattern (German standard ports), offset from center of body	

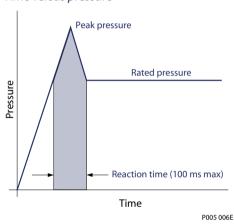
520L0569 · Rev. C • 03/2005

PRESSURE

The inlet vacuum must be controlled in order to realize expected pump life and performance. The system design must meet inlet pressure requirements during all modes of operation. Expect lower inlet pressures during cold start. It should improve quickly as the fluid warms.

Inlet pressure

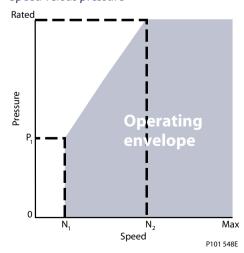
Maximum continuous vacuum	bar absolute – [in. Hg] –	0.8 [23.6]
Maximum intermittent vacuum		0.6 [17.7]
Maximum pressure		3.0 [88.5]


Peak pressure is the highest intermittent pressure allowed. The relief valve overshoot (reaction time) determines peak pressure. It is assumed to occur for less than 100 ms. The illustration to the right shows peak pressure in relation to rated pressure and reaction time (100 ms maximum).

Rated pressure is the average, regularly occurring, operating pressure that should yield satisfactory product life. The maximum machine load demand determines rated pressure.

For all systems, the load should move below this pressure.

System pressure is the differential between the outlet and inlet ports. It is a dominant operating variable affecting hydraulic unit life. High system pressure, resulting from high load, reduces expected life. System pressure must remain at, or below, rated pressure during normal operation to achieve expected life.



SPEED

Maximum speed is the limit recommended by Sauer-Danfoss for a particular gear pump when operating at rated pressure. It is the highest speed at which normal life can be expected.

The lower limit of operating speed is the **minimum speed**. It is the lowest speed at which normal life can be expected. The minimum speed increases as operating pressure increases. When operating under higher pressures, a higher minimum speed must be maintained, as illustrated to the right:

Speed versus pressure

HYDRAULIC FLUIDS

Ratings and data for SNP3 and SEP3 gear pumps are based on operating with premium hydraulic fluids containing oxidation, rust, and foam inhibitors. These fluids must possess good thermal and hydrolytic stability to prevent wear, erosion, and corrosion of internal components. They include:

- Hydraulic fluids following DIN 51524, part 2 (HLP) and part 3 (HVLP) specifications
- API CD engine oils conforming to SAE J183
- M2C33F or G automatic transmission fluids
- Certain agricultural tractor fluids

Use only clean fluid in the pump and hydraulic circuit.

Never mix hydraulic fluids.

Please see Sauer-Danfoss publication *Hydraulic Fluids and Lubricants Technical Information*, 520L0463 for more information. Refer to publication *Experience with Biodegradable Hydraulic Fluids Technical Information*, 520L0465 for information relating to biodegradable fluids.

TEMPERATURE AND VISCOSITY

Temperature and viscosity requirements must be concurrently satisfied. Use petroleum / mineral-based fluids.

High temperature limits apply at the inlet port to the pump. The pump should run at or below the maximum continuous temperature. The peak temperature is based on material properties. Don't exceed it.

Cold oil, generally, doesn't affect the durability of pump components. It may affect the ability of oil to flow and transmit power. For this reason, keep the temperature at 16°C [60 °F] above the pour point of the hydraulic fluid.

Minimum (cold start) temperature relates to the physical properties of component materials.

Minimum viscosity occurs only during brief occasions of maximum ambient temperature and severe duty cycle operation. You will encounter maximum viscosity only at cold start. During this condition, limit speeds until the system warms up. Size heat exchangers to keep the fluid within these limits. Test regularly to verify that these temperatures and viscosity limits aren't exceeded. For maximum unit efficiency and bearing life, keep the fluid viscosity in the recommended viscosity range.

Fluid viscosity

Maximum (cold start)	mm²/s	1000 [4600]
Recommended range	[SUS]	12-60 [66-290]
Minimum	[303]	10 [60]

Temperature

Minimum (cold start)	۰٫	-20 [-4]
Maximum continuous	C	80 [176]
Peak (intermittent)	[°F]	90 [194]

520L0569 • Rev. C • 03/2005

FILTRATION

Filters

Use a filter that conforms to Class 22/18/13 of ISO 4406 (or better). It may be on the pump outlet (pressure filtration), inlet (suction filtration), or reservoir return (return-line filtration).

Selecting a filter

When selecting a filter, please consider:

- contaminant ingression rate (determined by factors such as the number of actuators used in the system)
- · generation of contaminants in the system
- required fluid cleanliness
- · desired maintenance interval
- filtration requirements of other system components

Measure filter efficiency with a Beta ratio (β_x). For:

- suction filtration, with controlled reservoir ingression, use a β_{35-45} = 75 filter
- return or pressure filtration, use a pressure filtration with an efficiency of $\beta_{10} = 75$.

 β_x ratio is a measure of filter efficiency defined by ISO 4572. It is the ratio of the number of particles greater than a given diameter (" $_x$ " in microns) upstream of the filter to the number of these particles downstream of the filter.

Fluid cleanliness level and β_{ν} ratio

Fluid cleanliness level (per ISO 4406)	Class 22/18/13 or better
β_{x} ratio (suction filtration)	$\beta_{35-45} = 75 \text{ and } \beta_{10} = 2$
β_{x} ratio (pressure or return filtration)	$\beta_{10} = 75$
Recommended inlet screen size	100-125 μm [0.004-0.005 in]

The filtration requirements for each system are unique. Evaluate filtration system capacity by monitoring and testing prototypes.

RESERVOIR

The **reservoir** provides clean fluid, dissipates heat, removes entrained air, and allows for fluid volume changes associated with fluid expansion and cylinder differential volumes. A correctly sized reservoir accommodates maximum volume changes during all system operating modes. It promotes deaeration of the fluid as it passes through, and accommodates a fluid dwell-time between 60 and 180 seconds, allowing entrained air to escape.

Minimum reservoir capacity depends on the volume required to cool and hold the oil from all retracted cylinders, allowing for expansion due to temperature changes. A fluid volume of 1 to 3 times the pump output flow (per minute) is satisfactory. The minimum reservoir capacity is 125% of the fluid volume.

Install the suction line above the bottom of the reservoir to take advantage of gravity separation and prevent large foreign particles from entering the line. Cover the line with a 100-125 micron screen. The pump should be below the lowest expected fluid level.

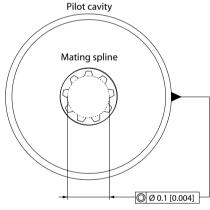
Put the return-line below the lowest expected fluid level to allow discharge into the reservoir for maximum dwell and efficient deaeration. A baffle (or baffles) between the return and suction lines promotes deaeration and reduces fluid surges.

LINE SIZING

Choose pipe sizes that accommodate minimum fluid velocity to reduce system noise, pressure drops, and overheating. This maximizes system life and performance. Design inlet piping that maintains continuous pump inlet pressure above 0.8 bar absolute during normal operation. The line velocity should not exceed the values in this table:

Maximum line velocity

Inlet		2.5 [8.2]
Outlet	m/s [ft/sec]	5.0 [16.4]
Return		3.0 [9.8]


Most systems use hydraulic oil containing 10% dissolved air by volume. Under high inlet vacuum conditions the oil releases bubbles. They collapse when subjected to pressure, resulting in cavitation, causing adjacent metal surfaces to erode. **Over-aeration** is the result of air leaks on the inlet side of the pump, and flow-line restrictions. These include inadequate pipe sizes, sharp bends, or elbow fittings, causing a reduction of flow line cross sectional area. This problem will not occur if inlet vacuum and rated speed requirements are maintained, and reservoir size and location are adequate.

PUMP DRIVE

Shaft options for Group 3 gear pumps include tapered, splined, or parallel shafts. They are suitable for a wide range of direct and indirect drive applications for radial and thrust loads.

Plug-in drives, acceptable only with a splined shaft, can impose severe radial loads when the mating spline is rigidly supported. Increasing spline clearance does not alleviate this condition.

Use plug-in drives if the concentricity between the mating spline and pilot diameter is within 0.1 mm [0.004 in]. Lubricate the drive by flooding it with oil. A 3-piece coupling minimizes radial or thrust shaft loads.

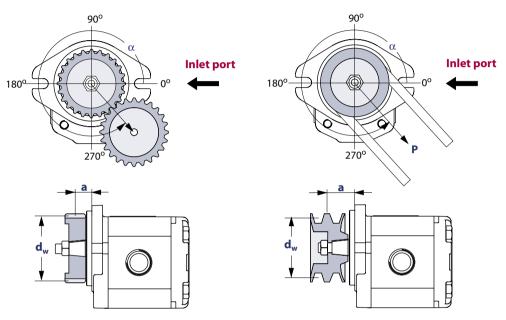
P101 002E

Caution

In order to avoid spline shaft damages it is recommended to use carburised and hardened steel couplings with 80-82 HRA surface hardness.

Allowable **radial shaft loads** are a function of the load position, load orientation, and operating pressure of the hydraulic pump. All external shaft loads have an effect on bearing life, and may affect pump performance.

In applications where external shaft loads can't be avoided, minimize the impact on the pump by optimizing the orientation and magnitude of the load. Don't use splined shafts for belt or gear drive applications. A spring-loaded belt tension-device is recommended for belt drive applications to avoid excessive tension. Avoid thrust loads in either direction. Contact Sauer-Danfoss if continuously applied external radial or thrust loads occur.


520L0569 · Rev. C • 03/2005

PUMP DRIVE DATA FORM

Photocopy this page and fax the complete form to your Sauer-Danfoss representative for an assistance in applying pumps with belt or gear drive. This illustration shows a pump with counterclockwise orientation:

Optimal radial load position

P101 566E

Application data

Item		Value	Unit
Pump displacement			cm³/rev [in³/rev]
Rated system pressure			
Relief valve setting			— □ bar □ psi
Pump shaft rotation			□ left □ right
Pump minimum speed			min-1 (ram)
Pump maximum speed			min ⁻¹ (rpm)
Drive gear helix angle (gear drive only)			degree
Belt type (gear drive only)			□V □ notch
Belt tension (gear drive only)	Р		□N □lbf
Angular orientation of gear or belt to inlet port	α		degree
Pitch diameter of gear or pulley	d _w		D
Distance from flange to center of gear or pulley	а		─────

PUMP LIFE

Pump life is a function of speed, system pressure, and other system parameters (such as fluid quality and cleanliness).

All Sauer-Danfoss gear pumps use hydrodynamic journal bearings that have an oil film maintained between the gear / shaft and bearing surfaces at all times. If the oil film is sufficiently sustained through proper system maintenance and operating within recommended limits, long life can be expected.

B₁₀ life expectancy number is generally associated with rolling element bearings. It does not exist for hydrodynamic bearings.

High pressure, resulting from high loads, impacts pump life. When submitting an application for review, provide machine duty cycle data that includes percentages of time at various loads and speeds. We strongly recommend a prototype testing program to verify operating parameters and their impact on life expectancy before finalizing any system design.

SOUND LEVELS

Noise is unwanted sound. Fluid power systems create noise. There are many techniques available to minimize noise. Understanding how it's generated and transmitted is necessary to apply these methods effectively.

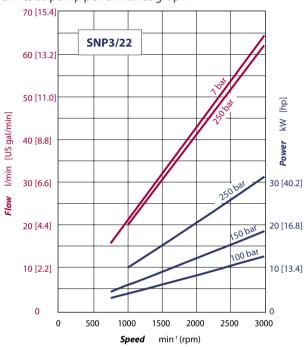
Noise energy is transmitted as fluid borne noise (pressure ripple) or structure borne noise. **Pressure ripple** is the result of the number of pumping elements (gear teeth) delivering oil to the outlet and the pump's ability to gradually change the volume of each pumping element from low to high pressure. Pressure ripple is affected by the compressibility of the oil as each pumping element discharges into the outlet of the pump. Pressure pulsations travel along hydraulic lines at the speed of sound (about 1400 m/s in oil) until there is a change in the system (as with an elbow fitting). Thus, the pressure pulsation amplitude varies with overall line length and position.

Structure borne noise may be transmitted wherever the pump casing is connected to the rest of the system.

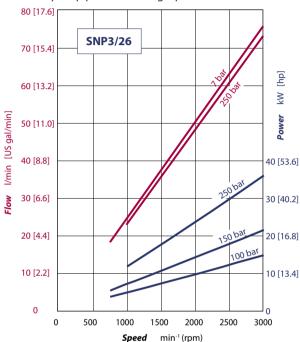
The way circuit components respond to excitation depends on their size, form, and mounting. Because of this, a system line may actually have a greater noise level than the pump. To minimize noise, use:

- flexible hoses (if you must use steel plumbing, clamp the lines).
- flexible (rubber) mounts to minimize other structure borne noise.

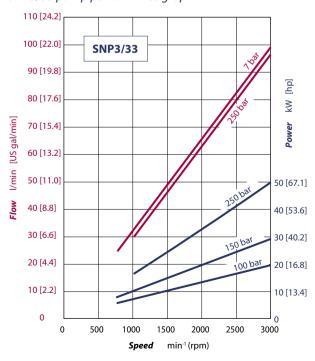
520L0569 · Rev. C • 03/2005

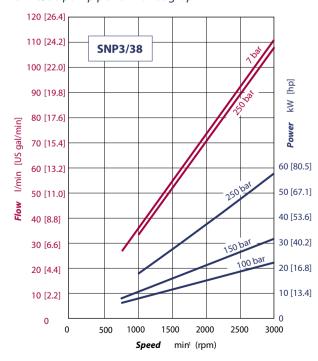


Group 3 Gear Pumps Technical Information Pump Performance


PUMP PERFORMANCE GRAPHS

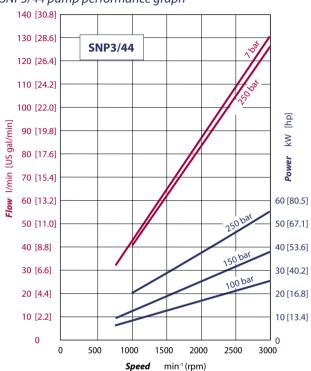
The graphs on the next few pages provide typical output flow and input power for Group 3 pumps at various working pressures. Data were taken using ISO VG46 petroleum /mineral based fluid at $50 \,^{\circ}\text{C}$ [122 $^{\circ}\text{F}$] (viscosity = $28 \, \text{mm}^2/\text{s}$ [132 SUS]).


SNP3/22 pump performance graph

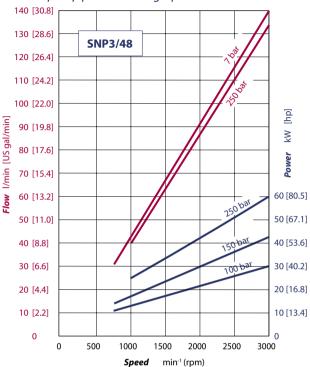

SNP3/26 pump performance graph

SNP3/33 pump performance graph

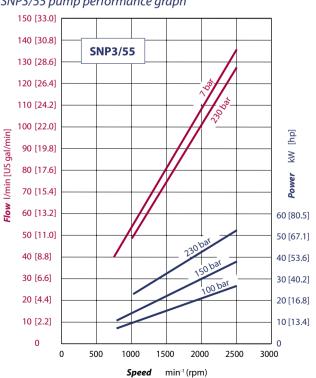
SNP3/38 pump performance graph

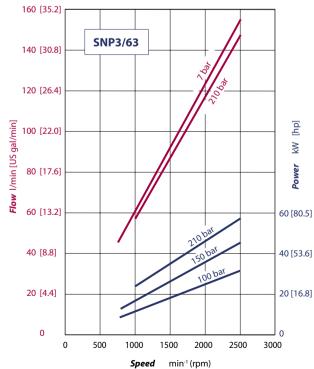


P005 200E



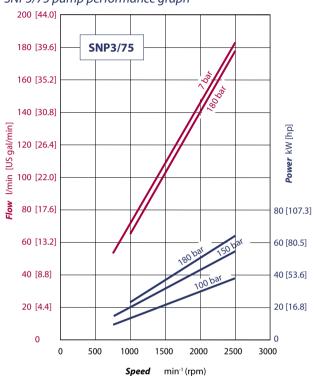
PUMP PERFORMANCE GRAPHS (continued)


SNP3/44 pump performance graph

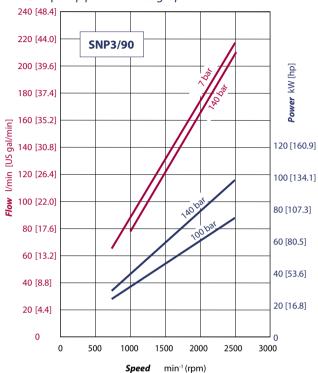

SNP3/48 pump performance graph

SNP3/55 pump performance graph

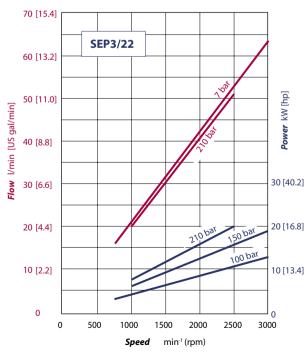
SNP3/63 pump performance graph

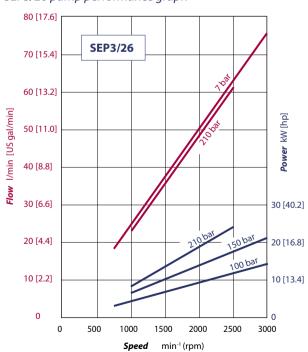

P005 209E

520L0569 • Rev. C • 03/2005



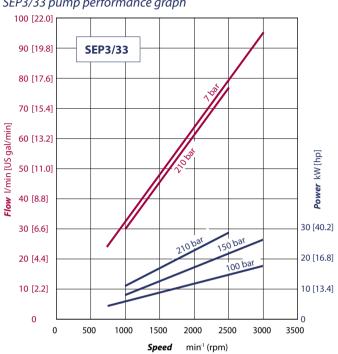
PUMP PERFORMANCE GRAPHS (continued)


SNP3/75 pump performance graph

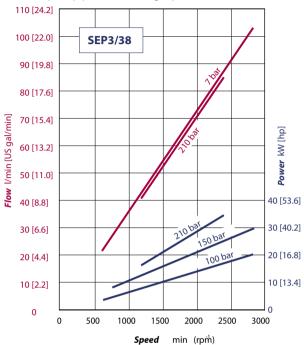

SNP3/90 pump performance graph

SEP3/22 pump performance graph

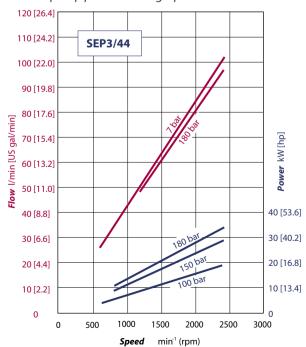
SEP3/26 pump performance graph


P005 204E

18



PUMP PERFORMANCE GRAPHS (continued)


SEP3/33 pump performance graph

SEP3/38 pump performance graph

SEP3/44 pump performance graph

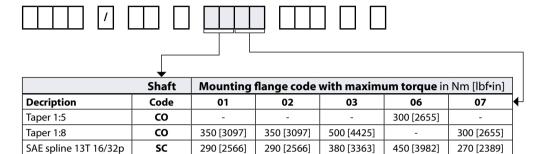
P005 225E

19 520L0569 • Rev. C • 03/2005

SHAFT, FLANGE, AND PORT CONFIGURATIONS

Pump	Code	Shaft	Flange	Port
SEP3 SNP3	CO01	1:8 tapered	50.8 mm [2.0 in] pilot Ø European 01 4-bolt	European flanged port + pattern
SNP3	CO02	1:8 tapered	50.8 mm [2.0 in] pilot Ø European 02 4-bolt	European flanged port + pattern
SNP3	CO03	1:8 tapered	60.3 mm [2.374 in] pilot Ø European 03 4-bolt	European flanged port + pattern
SNP3	CO06	1:5 tapered	105 mm [4.133 in] pilot Ø German 4-bolt	German std ports port X pattern
SEP3 SNP3	Cl01	Ø 20 mm [0.787 in] parallel	50.8 mm [2.0 in] pilot Ø European 01 4-bolt	European flanged port + pattern
SNP3	CI02	Ø 20 mm [0.787 in] parallel	50.8 mm [2.0 in] pilot Ø European 02 4-bolt	European flanged port + pattern
SNP3	CI03	Ø 22 mm [0.866 in] parallel	60.3 mm [2.374 in] pilot Ø European 03 4-bolt	European flanged port + pattern
SEP3 SNP3	CI07	Ø 22.225 mm [0.875 in] parallel	SAE B Ø 101.6 pilot 2-bolt	Vertical four bolt flanged port
SNP3	SC01	Splined shaft 13T - m 1.60 DIN 5482-B22x19	50.8 mm [2.0 in] pilot Ø European 01 4-bolt	European flanged port + pattern
SNP3	SC02	Splined shaft 13T - m 1.60 DIN 5482-B22x19	50.8 mm [2.0 in] pilot Ø European 02 4-bolt	European flanged port + pattern
SNP3	SC03	Splined shaft 13T - m 1.60 DIN 5482-B25x22	60.3 mm [2.374 in] pilot Ø European 03 4-bolt	European flanged port + pattern
SNP3	SC06	Splined shaft 13T - m 1.60 DIN 5482-B28x25	105 mm [4.133 in] pilot Ø German 4-bolt	German std ports port X pattern
SEP3 SNP3	SC07	Splined shaft SAE J498 13T - 16/32DP	SAE B Ø 101.6 pilot 2-bolt	Vertical four bolt flanged port

Group 3 Gear Pumps Technical Information Product Options


SHAFT OPTIONS

Direction is viewed facing the shaft. Group 3 pumps are available with a variety of splined, parallel, and tapered shaft ends. Not all shaft styles are available with all flange styles.

Valid combinations and nominal torque ratings include:

CI

Shaft availability and torque capability

210 [1858]

300 [2655]

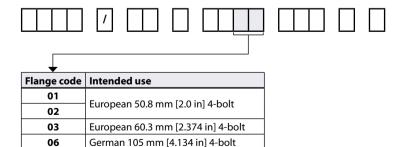
230 [2035]

Sauer-Danfoss recommends mating splines conform to SAE J498 or DIN 5482. Sauer-Danfoss external SAE splines have a flat root side fit with circular tooth thickness reduced by 0.127 mm [0.005 in] in respect to class 1 fit. Dimensions are modified to assure a clearance fit with the mating spline.

210 [1858]

• Caution

07


SAE B 2-bolt

Parallel ø 22.225 mm

Shaft torque capability may limit allowable pressure. Torque ratings assume no external radial loading. Applied torque must not exceed these limits, regardless of stated pressure parameters. Maximum torque ratings are based on shaft torsional fatigue strength.

MOUNTING FLANGES

Sauer-Danfoss offers many types of industry standard mounting flanges. This table shows order codes for each available mounting flange and its intended use:

520L0569 · Rev. C • 03/2005

Group 3 Gear Pumps Technical Information Product Options

PORT CONFIGURATIONS

Standard port configurations

This table lists standard porting offered with each mounting flange:

Code	Description	Standard on
С	Flanged port with threaded holes in + pattern (European standard)	01,02,03 flanges
G or B	Flanged port with threaded holes in X pattern (German standard ports)	06 flange
Α	SAE flanged ports	07 flange

Nonstandard port configurations

Each mounting flange comes with a standard port style. The code is only required when ordering nonstandard ports.

Various port configurations are available on Group 3 pumps. They include:

- European standard flanged ports
- · German standard flanged ports
- Gas threaded ports (BSPP)
- O-ring boss (following SAE J1926/1 [ISO 11926-1] UNF threads, standard)

A table of dimensions is on the next page. Here are a few nonstandard port configuration codes:

Code	Description
Α	SAE flanged port
В	Flanged port with threaded holes in X pattern (German standard), centered on the body
С	Flanged port with threaded holes in + pattern (European standard)
D	Threaded metric port
E	Threaded SAE O-ring boss port
F	Threaded GAS (BSPP)
G	Flanged port with threaded holes in X pattern (German standard), offset from center of the body



520L0569 • Rev. C • 03/2005

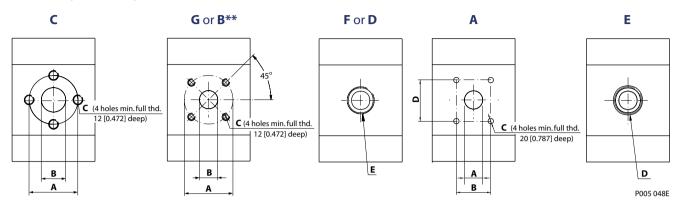
Group 3 Gear Pumps Technical Information Product Options

PORTING

Pump ports dimensions

Mod	el code*			(5				G or B **	
Standard for flange	•	01/02				03		06		
Type (disp	lacement)	В	Α	С	В	Α	С	В	Α	С
	Inlet	20 [0.787]	40 [1.575]	M8	20 [0.787]	40 [1.575]	M8	27 [1.063]	55 [2.165]	M8
22	Outlet	20 [0.787]	40 [1.575]	M8	20 [0.787]	40 [1.575]	M8	18 [0.709]	55 [2.165]	M8
26	Inlet	20 [0.787]	40 [1.575]	M8	20 [0.787]	40 [1.575]	M8	27 [1.063]	55 [2.165]	M8
26	Outlet	20 [0.787]	40 [1.575]	M8	20 [0.787]	40 [1.575]	M8	18 [0.709]	55 [2.165]	M8
22	Inlet	27 [1.063]	51 [2.008]	M10	27 [1.063]	51 [2.008]	M10	27 [1.063]	55 [2.165]	M8
33	Outlet	20 [0.787]	40 [1.575]	M8	20 [0.787]	40 [1.575]	M8	18 [0.709]	55 [2.165]	M8
20	Inlet	27 [1.063]	51 [2.008]	M10	27 [1.063]	51 [2.008]	M10	27 [1.063]	55 [2.165]	M8
38	Outlet	20 [0.787]	40 [1.575]	M8	20 [0.787]	40 [1.575]	M8	18 [0.709]	55 [2.165]	M8
44	Inlet	27 [1.063]	51 [2.008]	M10	27 [1.063]	51 [2.008]	M10	27 [1.063]	55 [2.165]	M8
44	Outlet	27 [1.063]	51 [2.008]	M10	27 [1.063]	51 [2.008]	M10	18 [0.709]	55 [2.165]	M8
40	Inlet	27 [1.063]	51 [2.008]	M10	27 [1.063]	51 [2.008]	M10	27 [1.063]	55 [2.165]	M8
48	Outlet	27 [1.063]	51 [2.008]	M10	27 [1.063]	51 [2.008]	M10	18 [0.709]	55 [2.165]	M8
	Inlet	27 [1.063]	51 [2.008]	M10	27 [1.063]	51 [2.008]	M10	27 [1.063]	55 [2.165]	M8
55	Outlet	27 [1.063]	51 [2.008]	M10	27 [1.063]	51 [2.008]	M10	18 [0.709]	55 [2.165]	M8
63	Inlet	36 [1.417]	62 [2.441]	M10	36 [1.417]	62 [2.441]	M10	36 [1.417]	55 [2.165]	M8
03	Outlet	27 [1.063]	51 [2.008]	M10	27 [1.063]	51 [2.008]	M10	27 [1.063]	55 [2.165]	M8
75	Inlet	36 [1.417]	62 [2.441]	M10	36 [1.417]	62 [2.441]	M10	36 [1.417]	55 [2.165]	M8
/3	Outlet	27 [1.063]	51 [2.008]	M10	27 [1.063]	51 [2.008]	M10	27 [1.063]	55 [2.165]	M8
	Inlet	36 [1.417]	62 [2.441]	M10	36 [1.417]	62 [2.441]	M10	36 [1.417]	55 [2.165]	M8
90	Outlet	27 [1.063]	51 [2.008]	M10	27 [1.063]	51 [2.008]	M10	27 [1.063]	55 [2.165]	M8

(the table is continued on the next page)


24

^{*} Mark only if desired porting is nonstandard for the flange code selected. Otherwise, mark.

^{**} Port **B** is in the center of the body. Port **G** is offset from the center of the body.

PORTING (continued)

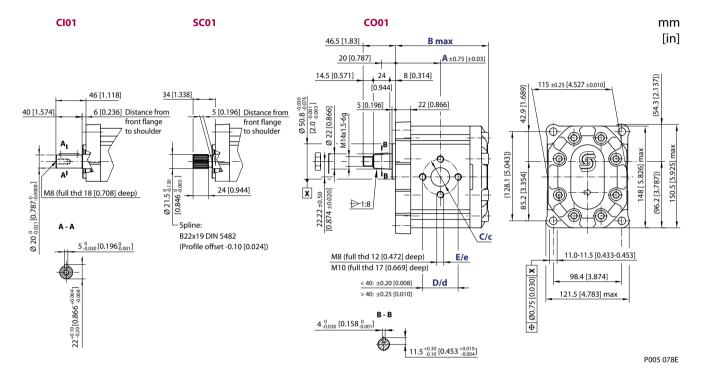
Pump ports dimensions (continued)

Mode	el code*			Α	F or D			E
Standard for flang			07/	/08/09		nonstan for all confi		07/08/09
Type (dis	placement)	Α	В	D	С	E		D
	Inlet	25.4 [1.000]	26.19 [1.031]	52.37 [2.062]	3/8-16UNC-2B	¾ Gas (BSPP)	M26x1.5	15/16-12UN-2B
22	Outlet	19.1 [0.752]	22.23 [0.875]	47.63 [1.875]	3/8-16UNC-2B	¾ Gas (BSPP)	M26x1.5	11/16-12UN-2B
26	Inlet	25.4 [1.000]	26.19 [1.031]	52.37 [2.062]	3/8-16UNC-2B	¾ Gas (BSPP)	M26x1.5	15/16-12UN-2B
20	Outlet	19.1 [0.752]	22.23 [0.875]	47.63 [1.875]	3/8-16UNC-2B	¾ Gas (BSPP)	M26x1.5	1 ¹ / ₁₆ –12UN–2B
33	Inlet	31.8 [1.252]	30.18 [1.188]	58.72 [2.312]	⁷ / ₁₆ –14UNC–2B	1 Gas (BSPP)	M33x2	15/8- 12UN-2B
33	Outlet	25.4 [1.000]	26.19 [1.031]	52.37 [2.062]	3/8-16UNC-2B	¾ Gas (BSPP)	M26x1.5	15/16-12UN-2B
38	Inlet	31.8 [1.252]	30.18 [1.188]	58.72 [2.312]	⁷ / ₁₆ –14UNC–2B	1 Gas (BSPP)	M33x2	15/8-12UN-2B
36	Outlet	25.4 [1.000]	26.19 [1.031]	52.37 [2.062]	3/8-16UNC-2B	¾ Gas (BSPP)	M26x1.5	15/16-12UN-2B
44	Inlet	31.8 [1.252]	30.18 [1.188]	58.72 [2.312]	⁷ / ₁₆ –14UNC–2B	1 Gas (BSPP)	M33x2	15/8-12UN-2B
44	Outlet	25.4 [1.000]	26.19 [1.031]	52.37 [2.062]	3/8-16UNC-2B	1 Gas (BSPP)	M33x2	15/16-12UN-2B
48	Inlet	31.8 [1.252]	30.18 [1.188]	58.72 [2.312]	⁷ / ₁₆ –14UNC–2B	1 Gas (BSPP)	M33x2	15/8-12UN-2B
40	Outlet	25.4 [1.000]	26.19 [1.031]	52.37 [2.062]	3/8-16UNC-2B	1 Gas (BSPP)	M33x2	15/16-12UN-2B
55	Inlet	38.1 [1.500]	35.71 [1.406]	69.85 [2.750]	½-13UNC-2B	1 Gas (BSPP)	M33x2	17/8-12UN-2B
33	Outlet	31.8 [1.252]	30.18 [1.188]	58.72 [2.312]	⁷ / ₁₆ –14UNC–2B	1 Gas (BSPP)	M33x2	15/8-12UN-2B
63	Inlet	38.1 [1.500]	35.71 [1.406]	69.85 [2.750]	½-13UNC-2B	1¼ Gas (BSPP)	M42x2	17/8-12UN-2B
03	Outlet	31.8 [1.252]	30.18 [1.188]	58.72 [2.312]	⁷ / ₁₆ –14UNC–2B	1 Gas (BSPP)	M33x2	15/8-12UN-2B
75	Inlet	38.1 [1.500]	35.71 [1.406]	69.85 [2.750]	½–13UNC–2B	1¼ Gas (BSPP)	M42x2	1 ⁷ / ₈ –12UN–2B
,,	Outlet	31.8 [1.252]	30.18 [1.188]	58.72 [2.312]	⁷ / ₁₆ –14UNC–2B	1 Gas (BSPP)	M33x2	15/8-12UN-2B
90	Inlet	38.1 [1.500]	35.71 [1.406]	69.85 [2.750]	½-13UNC-2B	1¼ Gas (BSPP)	M42x2	1 ⁷ / ₈ –12UN–2B
90	Outlet	31.8 [1.252]	30.18 [1.188]	58.72 [2.312]	⁷ / ₁₆ –14UNC–2B	1 Gas (BSPP)	M33x2	15/8-12UN-2B

^{*} Mark only if desired porting is nonstandard for the flange code selected. Otherwise, mark •

520L0569 • Rev. C • 03/2005 **25**

^{**} Port **B** is in the center of the body. Port **G** is offset from the center of the body.


Group 3 Gear Pumps Technical Information

Dimensions

SNP3 – CI01, SC01 AND CO01

Standard porting

The drawing shows the SNP3 standard porting for Cl01, SC01 and CO01. The configurations Cl01 and CO01 are available for the **SEP3**. The SEP3 overall length is 12 mm [0.472 in] less than the SNP3 for the whole range of displacements (22.1 to 44.1 cm³/rev [1.35 to 2.69 in³/rev]).

SNP3 – CI01. SC01 and CO01 dimensions

Type (displace)	Type (displacement)		26	33	38	44	48	55	63	75	90	
,, ,		63.0	64.5	67.0	68.8	71.0	72.5	75.0	78.0	82.0	87.0	
	Α	[2.480]	[2.539]	[2.637]	[2.708]	[2.795]	[2.854]	[2.952]	[3.070]	[3.228]	[3.425]	
Dimension		132.5	135.5	140.5	144.0	148.5	151.5	156.5	162.5	170.5	180.5	
	В	[5.216]	[5.334]	[5.531]	[5.669]	[5.846]	[5.964]	[6.161]	[6.397]	[6.712]	[7.106]	
	С	20 [0	20 [0.787]		27 [1.063]				36 [1.417]			
Inlet	D	40 [1	.575]		51 [2	2.007] 62 [2.441]						
	E	N	18			M10						
	С		20 [0	.787]		27 [1.063]						
Outlet	d		40 [1.575]				51 [2.001]					
	е		N	18		M10						

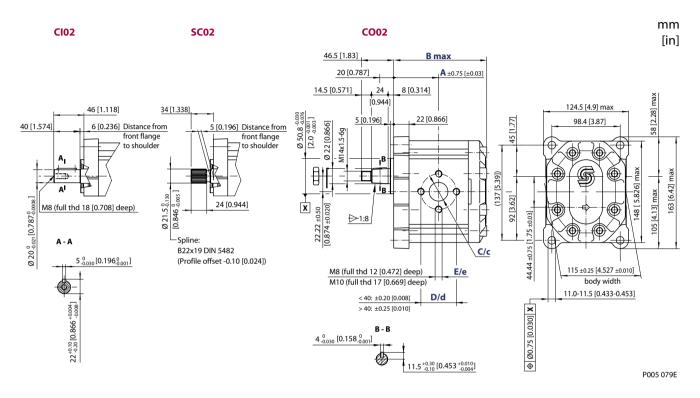
Model code example

SNP3	SNP3/22 D CI01
	SNP3/38 S SC01
	SNP3/75 D CO01
SEP3	SEP3/22 S CI01
	SEP3/44 D CO01

Maximum shaft torque

CI01		210 [1858]
SC01	N•m [lbf•in]	290 [2566]
CO01		350 [3097]

For further details on ordering, see *Model code*, pages 8 and 9.


26

SNP3 – Cl02, SC02 AND CO02

Standard porting

The drawing shows the SNP3 standard porting for Cl02, SC02 and CO02.

SNP3 - Cl02, SC02 and CO02 dimensions

Type (displacement)		22	26	33	38	44	48	55	63	75	90		
Dimension B	Α	63.0 [2.480]	64.5 [2.539]	67.0 68.8 [2.637] [2.708]		71.0 [2.795]	72.5 [2.854]	75.0 [2.952]	78.0 [3.070]	82.0 [3.228]	87.0 [3.425]		
	В	132.5 [5.216]	135.5 [5.334]	140.5 [5.531]	144.0 [5.669]	148.5 [5.846]	151.5 [5.964]	156.5 [6.161]	162.5 [6.397]	170.5 [6.712]	180.5 [7.106]		
	С		20 [0.787] 27 [1			1.063] 36 [1.417]							
Inlet	D	40 [1	.575]	51 [2.007] 62 [2.441]									
	E	M8				M10							
	С		20 [0.787]				27 [1.063]						
Outlet	d		40 [1	.575]		51 [2.001]							
	е		N	18		M10							

Model code example

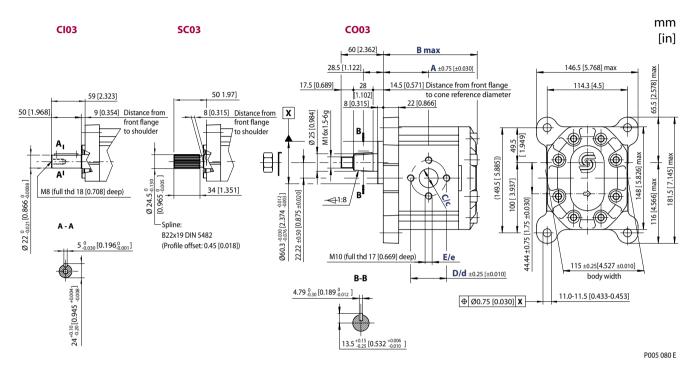
SNP3/22 D CI02 SNP3/38 S SC02
SNP3/75 D CO02

Maximum shaft torque

CI02		210 [1858]
SC02	N•m [lbf•in]	290 [2566]
CO02		350 [3097]

For further details on ordering, see *Model code*, pages 8 and 9.

520L0569 · Rev. C • 03/2005 27



Group 3 Gear Pumps Technical Information Dimensions

SNP3 – CI03, SC03 AND CO03

Standard porting

The drawing shows the SNP3 standard porting for Cl03, SC03 and CO03.

SNP3 - Cl03, SC03 and CO03 dimensions

Type (displace	ment)	22	26	33	38	44	48	55	63	75	90	
Dimension B	^	63.0	64.5	67.0	68.8	71.0	72.5	75.0	78.0	82.0	87.0	
	A	[2.480]	[2.539]	[2.637]	[2.708]	[2.795]	[2.854]	[2.952]	[3.070]	[3.228]	[3.425]	
	D	132.5	135.5	140.5	144.0	148.5	151.5	156.5	162.5	170.5	180.5	
	В	[5.216]	[5.334]	[5.531]	[5.669]	[5.846]	[5.964]	[6.161]	[6.397]	[6.712]	[7.106]	
С		20 [0	.787]	27 [1.063]				36 [1.417]				
Inlet	D	40 [1	.575]		51 [2	.007]		62 [2.441]				
	E	M8				M10						
	С	20 [0.787]				27 [1.063]						
Outlet	d		40 [1	.575]		51 [2.001]						
	е		N	18		M10						

Model code example

SNP3

Maximum shaft torque

CI03		300 [2655]
SC03		380 [3363]
CO03		500 [4425]

For further details on ordering, see *Model code*, pages 8 and 9.

28

SNP3 - SC06 AND CO06

Standard porting

The drawing shows the SNP3 standard porting for SC06 and CO06.

CO06 **SC06** 51 [2.007] B max Ø105-0.036 [4.133-0.003 23.5 [0.925] A±0.75 [±0.03] mm [in] 15 [0.590] 11 [0.433] 115 ±0.25 [4.527 ±0.010] [0.984] 40 [1.574] body width 8 [0.314] 22 [0.866] 7 [0.275] Distance from front flange to shoulder Ø 25 [0.984] M16x1.516g (58.5 [2.303]) 48 [1.889] 45° 166.5 [6.555] max 148 [5.826] max (145 [5.708]) 28 [1.102] 108 [4.251]) 1:5 B28x25 DIN 5482 E/e M8 (full thd 12 [0.472] deep) (Profile offset: 0.202 [0.008]) 11.0-11.5 [0.433-0.453] **D/d** ±0.25 [0.010] ⊕ Ø0.75 [0.030] **X** 102.0 [4.015] 5 .0.030 [0.196.0.001] 123.5 [4.862] max 13.0 +0.30 [0.512 +0.010] P005 081F

SNP3 - SC06 and CO06 dimensions

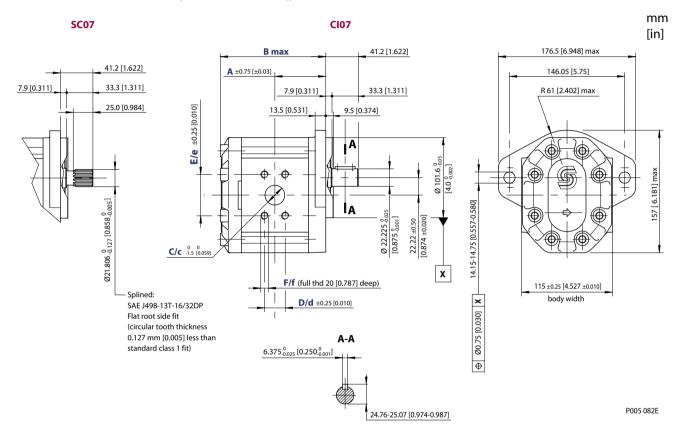
Type (displacement)		22	26	33	38	44	48	55	63	75	90	
	^	63.0	64.5	67.0	68.8	71.0	72.5	75.0	78.0	82.0	87.0	
Dimension	Α	[2.480]	[2.539]	[2.637]	[2.708]	[2.795]	[2.854]	[2.952]	[3.070]	[3.228]	[3.425]	
Dimension	D	132.5	135.5	140.5	144.0	148.5	151.5	156.5	162.5	170.5	180.5	
	В	[5.216]	[5.334]	[5.531]	[5.669]	[5.846]	[5.964]	[6.161]	[6.397]	[6.712]	[7.106]	
	C	27 [1.063]							36 [1.417]			
Inlet	D											
	Е	M8										
	С		18 [0.708] 27 [1.063]									
Outlet	d					55 [2	.165]					
	е											

Model code example

Model code example			Maximum shaft torque			
SNP3	SNP3/38 S SC06		SC06	N•m [lbf•in]	450 [3982]	
	SNP3/55 D CO06		CO06	INTIN [IDITIN]	300 [2655]	

For further details on ordering, see *Model code*, pages 8 and 9.

29 520L0569 • Rev. C • 03/2005


Group 3 Gear Pumps Technical Information Dimensions

SNP3 - SC07 AND CI07

Standard porting

The drawing shows the SNP3 standard porting for SC07 and Cl07.

The same configurations are available for the **SEP3**. The SEP3 overall length is 12 mm [0.472 in] less than the SNP3 for the whole range of displacements (22.1 to 44.1 cm³/rev [1.35 to 2.69 in³/rev]).

SNP3 – SC07 and Cl07 dimensions

Type (displacement)		22	26	33	38	44	48	55	63	75	90
	Α	63.0	64.5	67.0	68.8	71.0	72.5	75.0	78.0	82.0	87.0
Dimension	A	[2.480]	[2.539]	[2.637]	[2.708]	[2.795]	[2.854]	[2.952]	[3.070]	[3.228]	[3.425]
Dimension		132.5	135.5	140.5	144.0	148.5	151.5	156.5	162.5	170.5	180.5
	В	[5.216]	[5.334]	[5.531]	[5.669]	[5.846]	[5.964]	[6.161]	[6.397]	[6.712]	[7.106]
	С		4 [1]		31.8 [1.251]		38.1 [1.5]			
Inlet	D	26.19	[1.031]		30.18	[1.188]		35.71 [1.405]			
iniet	E	52.37	[2.061]		58.72	[2.311]		69.85 [2.75]			
	F	3/8-16	JNC-2B		⁷ / ₁₆ –14l	JNC-2B		½–13UNC–2B			
	С	19.1 [0.751]		25.4	4 [1]		31.8 [1.251]			
O at lat	d	22.23	[0.875]		26.19	[1.031]		30.18 [1.188]			
Outlet	е	47.63	[1.875]	52.37 [2.061]				58.72 [2.311]			
	f	3/8-16	JNC-2B	³/8-16UNC-2B					⁷ /16-14l	JNC-2B	

SNP3 - SC07 AND Cl07 (continued)

Model code example

ZNP3	SNP3/90 D SC07 SNP3/38 S CI07
SFP3	SEP3/22 S SC07 SEP3/26 D Cl07

Maximum shaft torque

SC07	N•m [lbf•in]	270 [2389]
CI07	Matti (IDIati)	230 [2035]

For further details on ordering, see *Model code*, pages 8 and 9.

520L0569 · Rev. C • 03/2005 31

OUR PRODUCTS

Hydrostatic transmissions

Hydraulic power steering

Electric power steering

Electrohydraulic power steering

Closed and open circuit axial piston

pumps and motors

Gear pumps and motors

Bent axis motors

Orbital motors

Transit mixer drives

Planetary compact gears

Proportional valves

Directional spool valves

Cartridge valves

Hydraulic integrated circuits

Hydrostatic transaxles

Integrated systems

Fan drive systems

Electrohydraulic controls

Digital electronics and software

Electric motors and inverters

Joysticks and control handles

Displays

Sensors

Sauer-Danfoss Hydraulic Power Systems - Market Leaders Worldwide

Sauer-Danfoss is a comprehensive supplier providing complete systems to the global mobile market.

Sauer-Danfoss serves markets such as agriculture, construction, road building, material handling, municipal, forestry, turf care, and many others.

We offer our customers optimum solutions for their needs and develop new products and systems in close cooperation and partnership with them.

Sauer-Danfoss specializes in integrating a full range of system components to provide vehicle designers with the most advanced total system design.

Sauer-Danfoss provides comprehensive worldwide service for its products through an extensive network of Authorized Service Centers strategically located in all parts of the world.

Sauer-Danfoss (US) Company 2800 East 13th Street Ames, IA 50010, USA

Phone: +1 515 239-6000, Fax: +1 515 239 6618

Sauer-Danfoss (Neumünster) GmbH & Co. OHG Postfach 2460, D-24531 Neumünster Krokamp 35, D-24539 Neumünster, Germany Phone +49 4321 871-0, Fax: +49 4321 871 122

Sauer-Danfoss (Nordborg) ApS DK-6430 Nordborg, Denmark

Phone: +45 7488 4444, Fax: +45 7488 4400

www.sauer-danfoss.com